Building lampposts in moduli spaces

Based on: work in progress, with Brice Bastian, Thomas Grimm and Lorenz Schlechter (2105.02232, with Brice Bastian and Thomas Grimm)

Damian van de Heisteeg

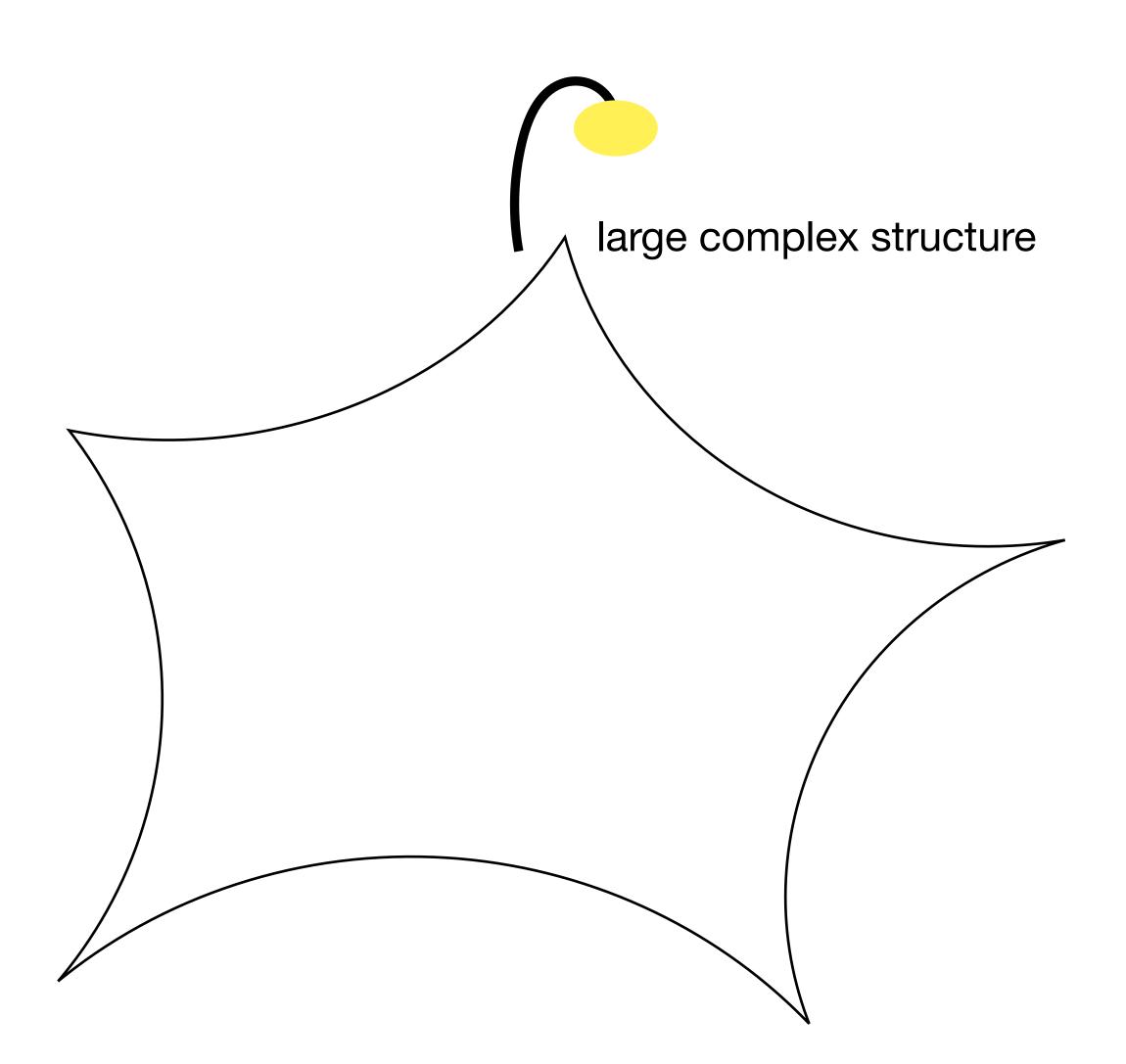
Utrecht University

String phenomenology 2022 Liverpool

Setting the stage

Arena:

Complex structure moduli space of Calabi-Yau manifolds

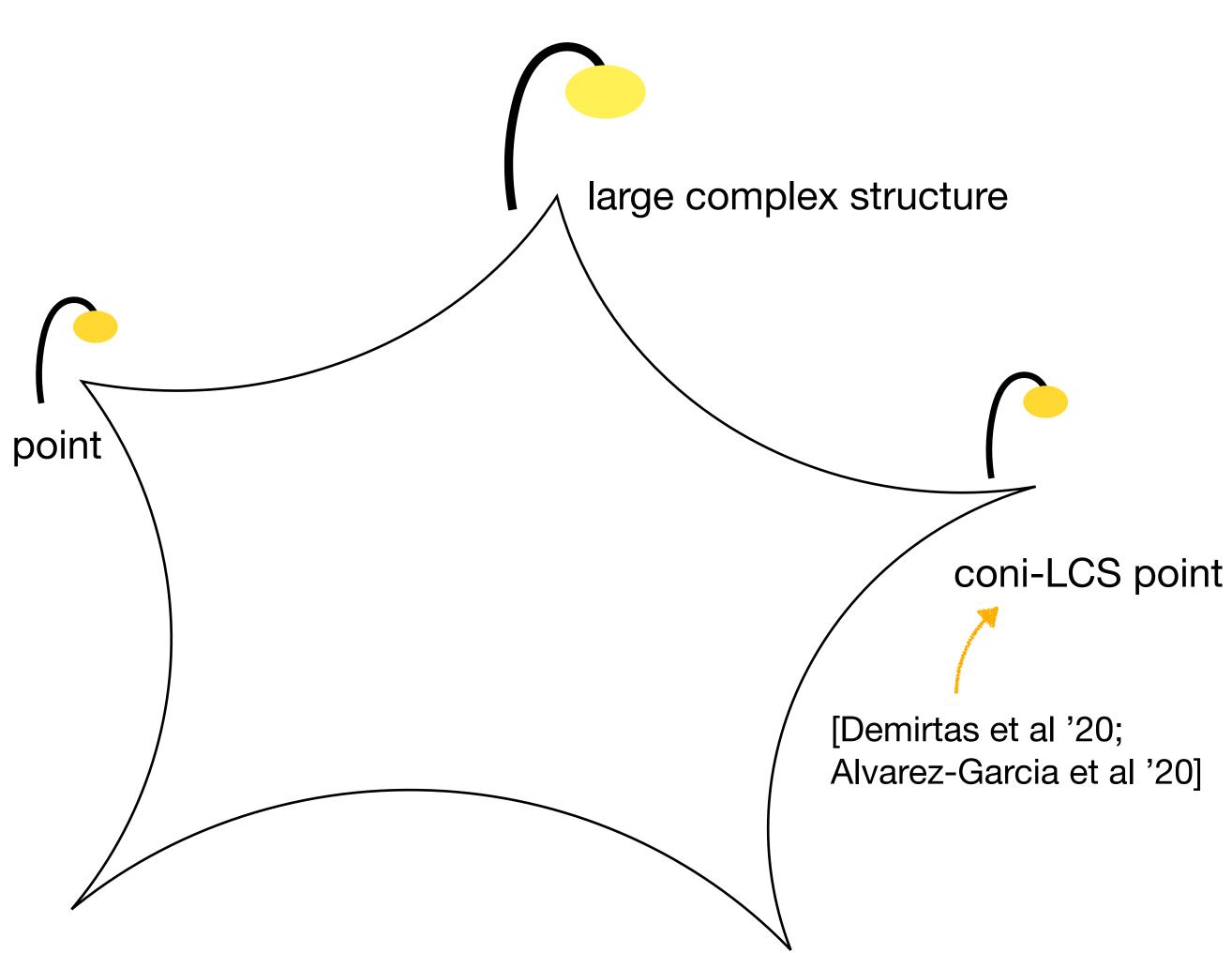


Setting the stage

Arena:

Complex structure moduli space of Calabi-Yau manifolds

conifold point



Setting the stage

Arena:

Complex structure moduli space of Calabi-Yau manifolds

conifold point

Goal:

- Explore boundaries away from LCS
 - Write down prepotentials/periods
 - Characterize model-dependent coefficients

 \implies asymptotic Hodge theory shines a light on all boundaries [Grimm, Palti, Valenzuela '18; ...]



Physical couplings and periods

Physical couplings in string compactifications:

- \bullet

Kähler potential of Type IIB CY compactifications $K = -\log i \int_{Y_3} \Omega \wedge \overline{\Omega}$ • Flux superpotential of Type IIB CY orientifolds $W = \int_{V_1} G_3 \wedge \Omega$

Physical couplings and periods

Physical couplings in string compactifications:

- Kähler potential of Type IIB CY compact
- Flux superpotential of Type IIB CY orier

Periods:

Physical couplings determined by **period integrals** of the (3,0)-form: $\Pi^{I}(z) = \int_{\Gamma} \Omega(z)$

(can be computed in **examples** with e.g. Picard-Fuchs methods: \implies complicated transcendental functions [Hosono, Klemm, Theisen, Yau '94; ...])

ctifications
$$K = -\log i \int_{Y_3} \Omega \wedge \overline{\Omega}$$

ntifolds $W = \int_{Y_3} G_3 \wedge \Omega$

Large complex structure point Periods near LCS: $\Pi = \begin{pmatrix} 1 \\ t \\ \frac{1}{6}\kappa_{111}t^3 + b_1t \\ -\frac{1}{2}\kappa_{111}t^2 + b_1t \\ \frac{1}{2}\kappa_{111}t^2 + b_1t \\ \frac{1}{2}\kappa_{11}$

$$\left(b_{1}^{t} t + \frac{i\chi\zeta(3)}{8\pi^{3}} \right) + \mathcal{O}(e^{2\pi i t})$$

$$t^{2} + b_{1}^{t} + b_{1}^$$

Large complex structure point Periods near LCS: $\Pi = \begin{pmatrix} 1 \\ t \\ \frac{1}{6}\kappa_{111}t^3 + b_1t + \frac{i\chi\zeta(3)}{8\pi^3} \\ -\frac{1}{2}\kappa_{111}t^2 + b_1 \end{pmatrix} + \mathcal{O}(e^{2\pi i t})$

Wishlist for periods near other boundaries

- **Natural coordinate** around singularity (mirror map)
- Understanding for exponential corrections (worldsheet instantons, GV invariants)
- (More pragmatic: expression for the **prepotential**)

Geometric interpretation of leading coefficients in periods (topological data of mirror CY)

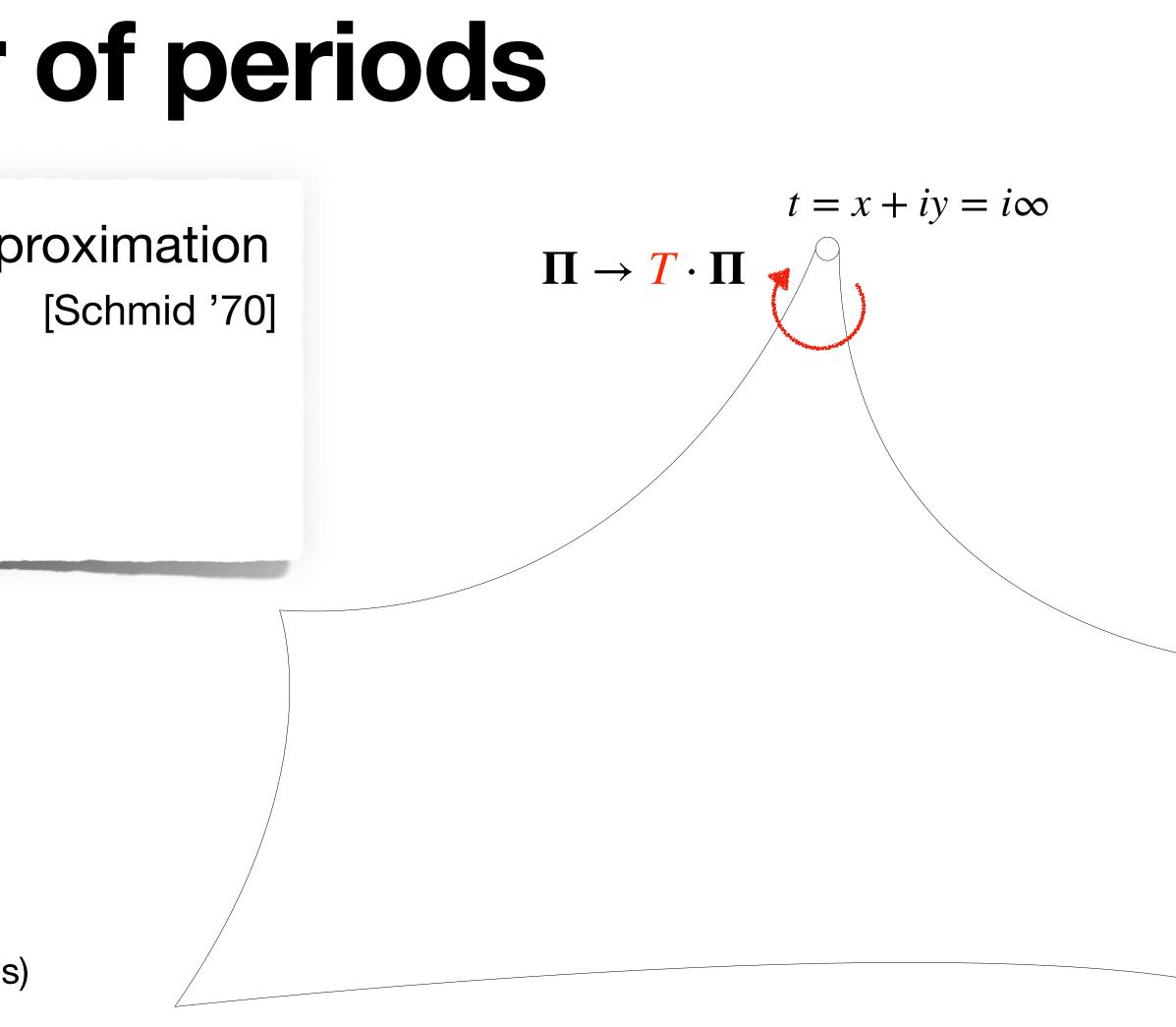
Asymptotic behavior of periods

Near-boundary behavior: nilpotent orbit approximation

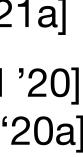
$$\Pi(t) = e^{tN} \left(\mathbf{a}_0 + \sum_{r>0} e^{2\pi i r t} \mathbf{a}_r \right)$$

"perturbative terms" "instanton corrections"

- Nilpotent log-monodromy matrices $N = \log T$ $(N^4 = 0 \text{ for CY threefolds})$
- \bullet



Exponential corrections a_r are essential near boundaries away from LCS lamppost [Bastian, Grimm, DH '21a] fits nicely with [Palti, Vafa, Weigand '20] [Cecotti, '20a]



Asymptotic period models

Construction of asymptotic periods [Bastian, Grimm, DH '21a]

- General models for all possible one- and two-moduli boundaries
- Includes essential exponential corrections

Asymptotic period models

Construction of asymptotic periods [Bastian, Grimm, DH '21a]

- General models for all possible one- and two-moduli boundaries
- Includes essential exponential corrections

Still to do:

- Periods in integral basis (important for flux quantization) \implies extension data methods [Green, Griffiths, Kerr '08]
- Understand model-dependent coefficients \implies match with geometrical examples

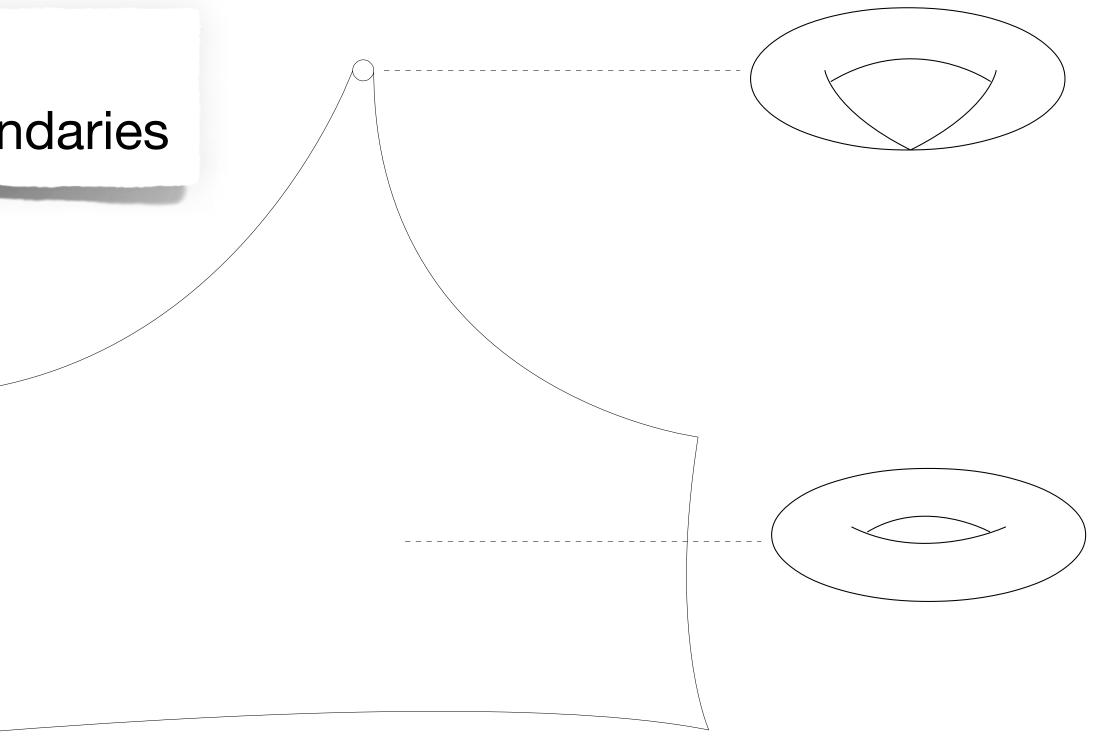
[Bastian, Grimm, DH, Schlechter]

Boundaries and singular geometries

Boundaries:

Calabi-Yau threefold degenerates at the boundaries

Asymptotic regimes:



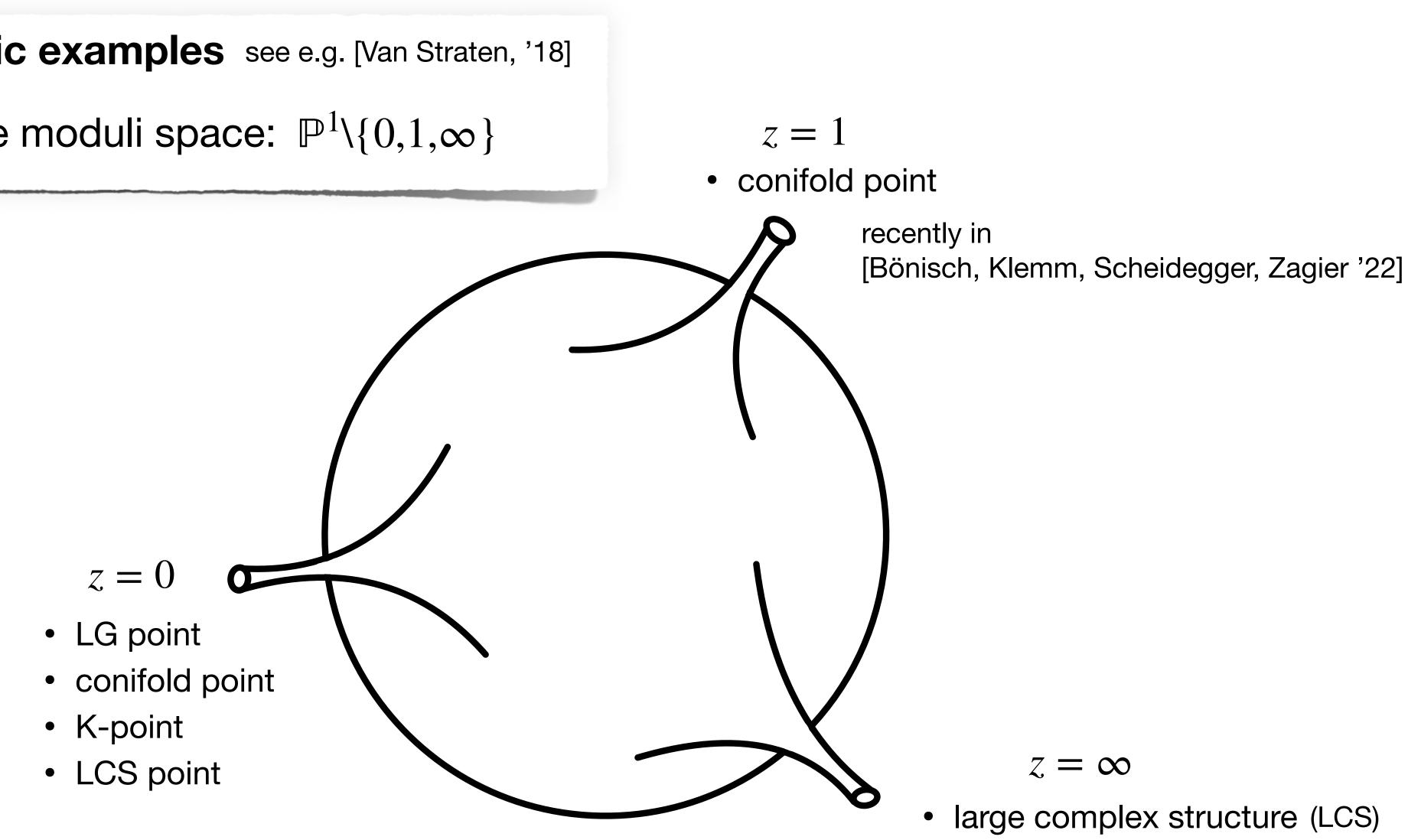
Topological & arithmetic properties of singular geometry determine leading period coefficients

[Bastian, Grimm, DH, Schlechter], see also [Bönisch, Klemm, Scheidegger, Zagier '22]

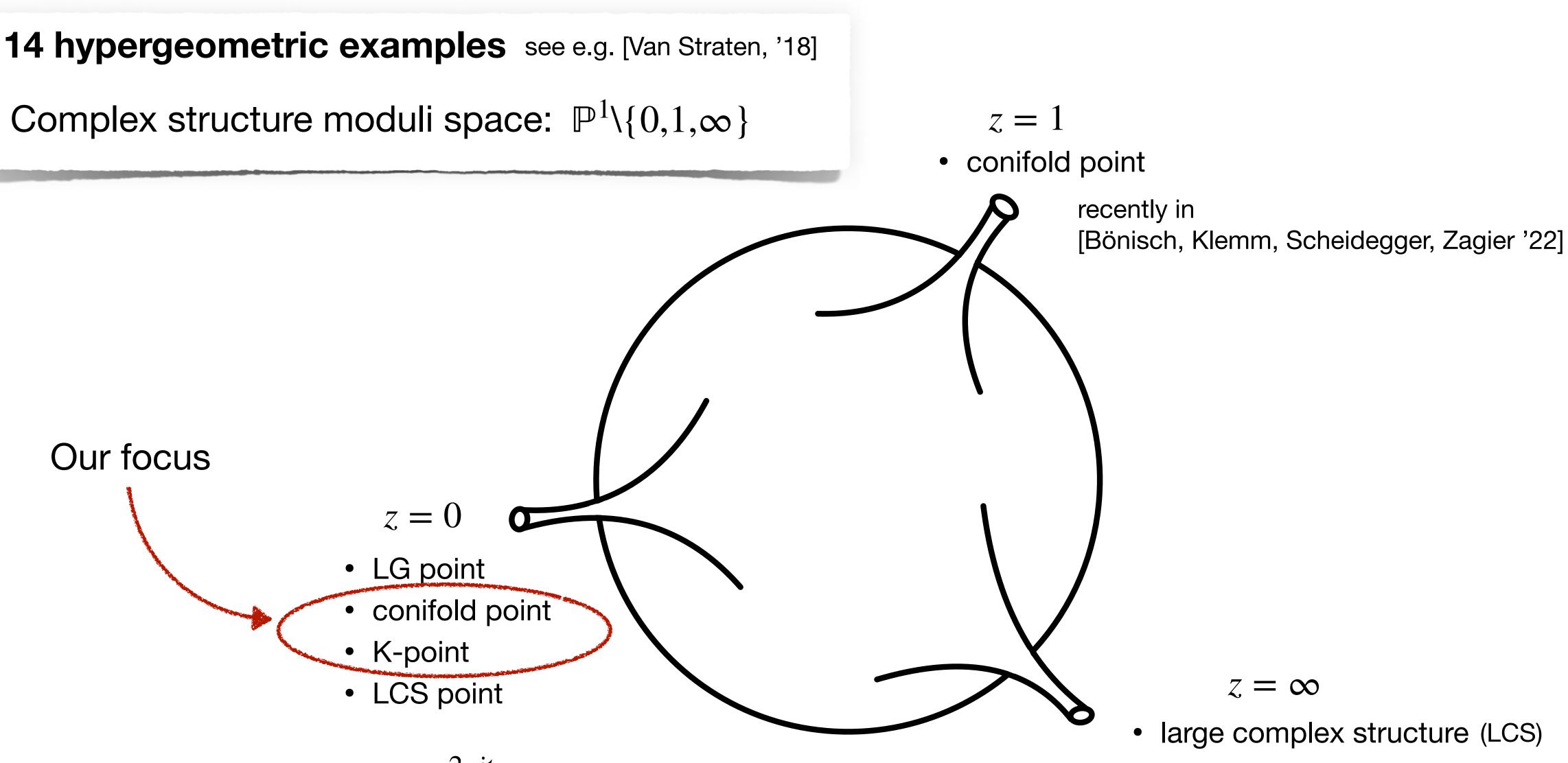
Geometrical input

14 hypergeometric examples see e.g. [Van Straten, '18]

Complex structure moduli space: $\mathbb{P}^1 \setminus \{0, 1, \infty\}$



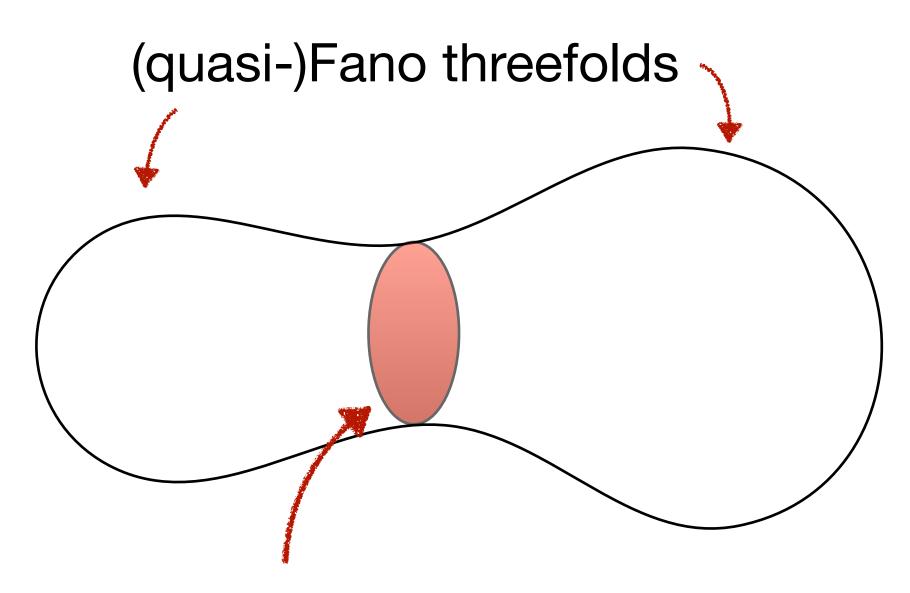
Geometrical input



(Patches related by $z = e^{2\pi i t}$)

K-point: geometry (als

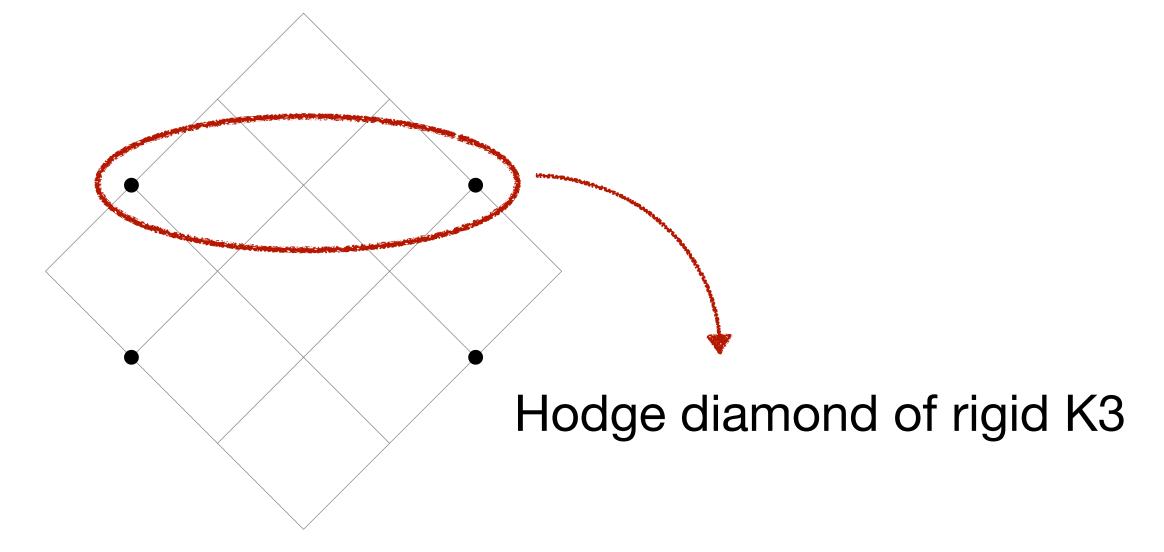
Geometry at the limit:



Rigid K3 surface (no complex structure moduli)

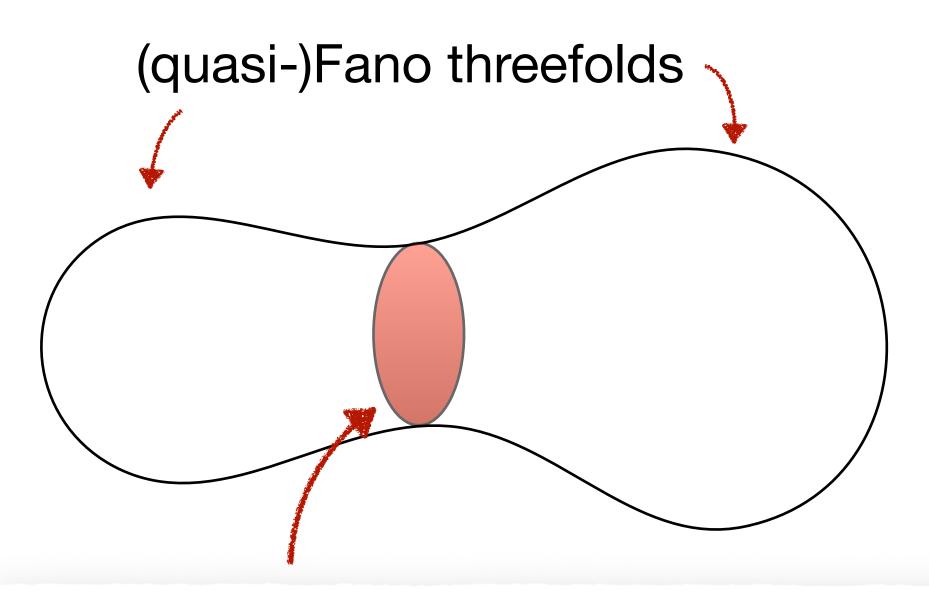
(also: Tyurin degeneration, II_{0} singularity)

Limiting mixed Hodge structure:



K-point: geometry

Geometry at the limit:

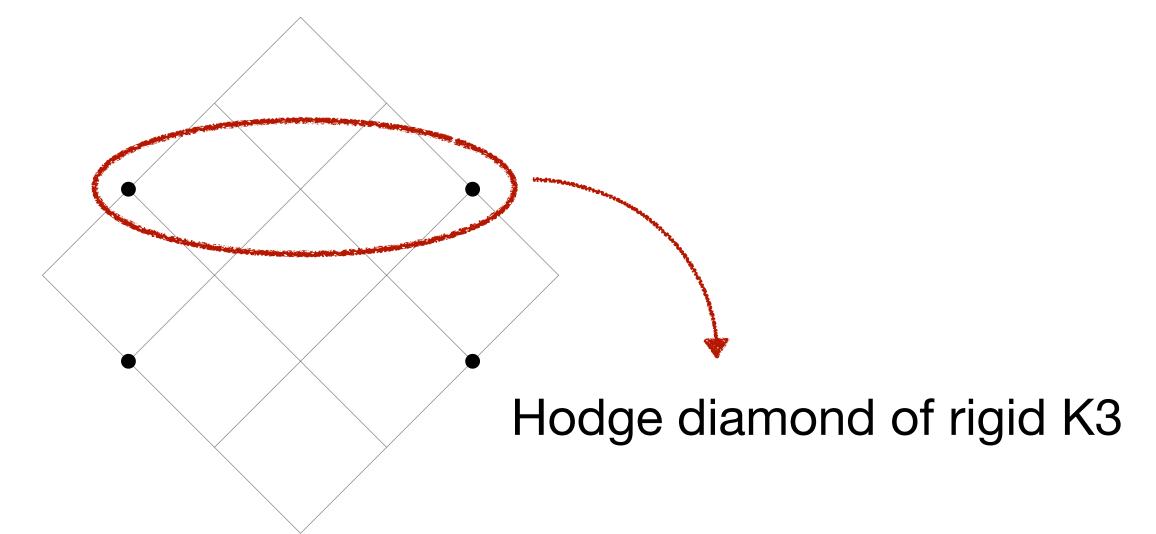


Rigid K3 surface (no complex structure moduli) Characterized by intersection form on $H^{2,0} \oplus H^{0,2} \subset H^2(K3)$

$$\int_{K3} \cdot \wedge \cdot = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix} \text{ with } d = 4ac - b^2 > 0$$

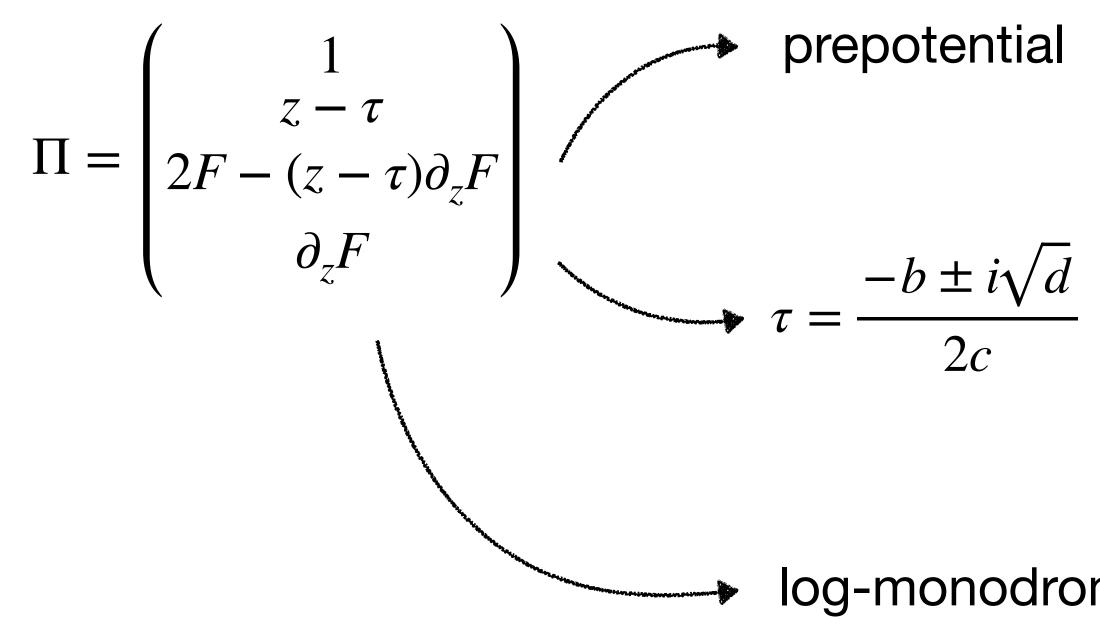
(also: Tyurin degeneration, Π_0 singularity)

Limiting mixed Hodge structure:



K-point: periods

Asymptotic periods:



[Bastian, Grimm, DH, Schlechter]

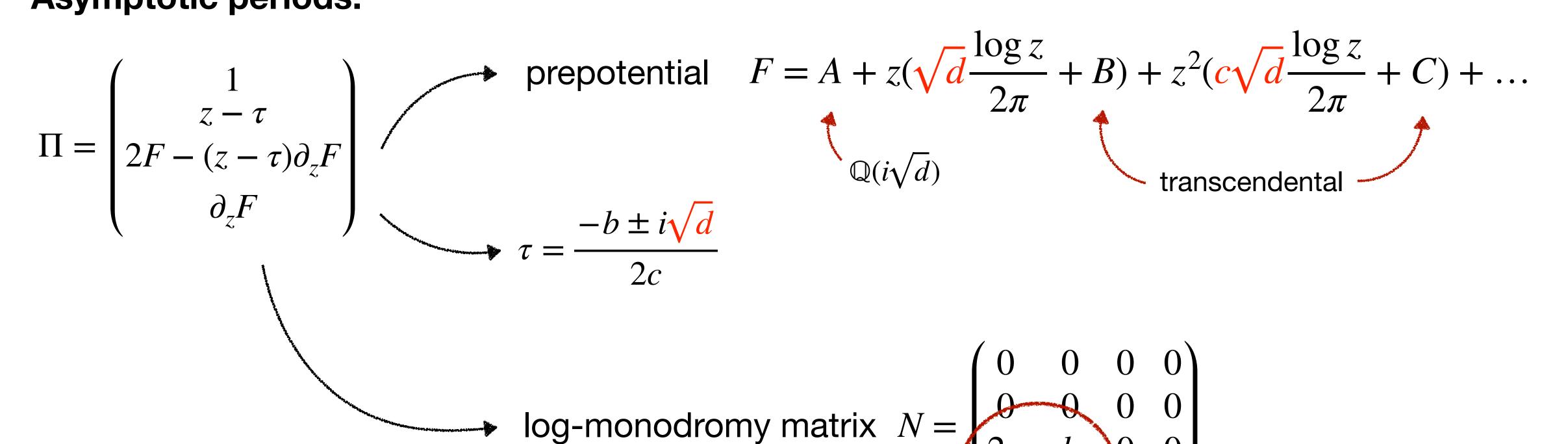
$$F = A + z(\sqrt{d}\frac{\log z}{2\pi} + B) + z^2(c\sqrt{d}\frac{\log z}{2\pi} + C) + c^2(c\sqrt{d}\frac{\log z$$

my matrix
$$N = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2a & b & 0 & 0 \\ b & 2c & 0 & 0 \end{pmatrix}$$

• • •

K-point: periods

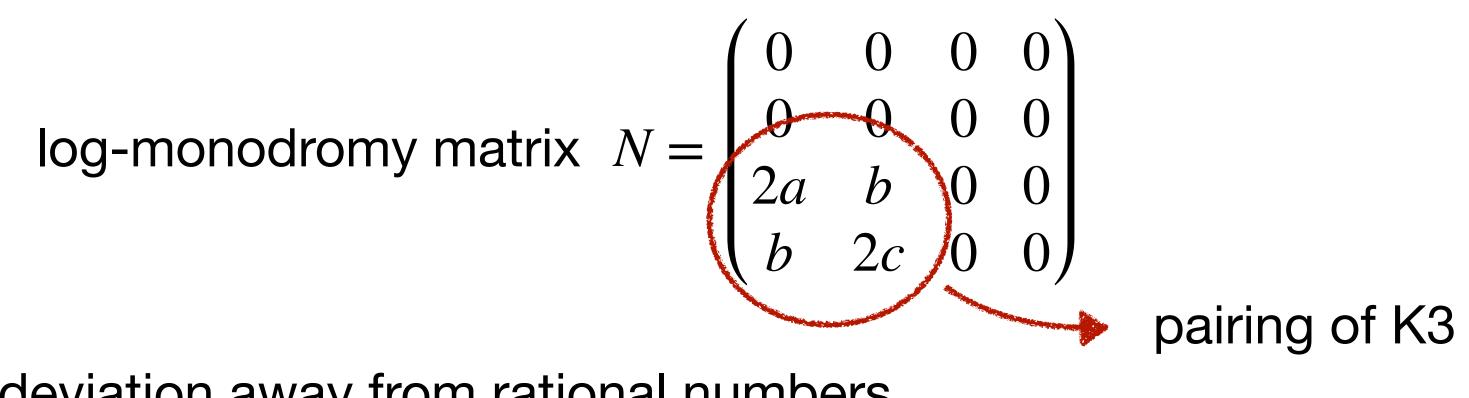
Asymptotic periods:



Remarks:

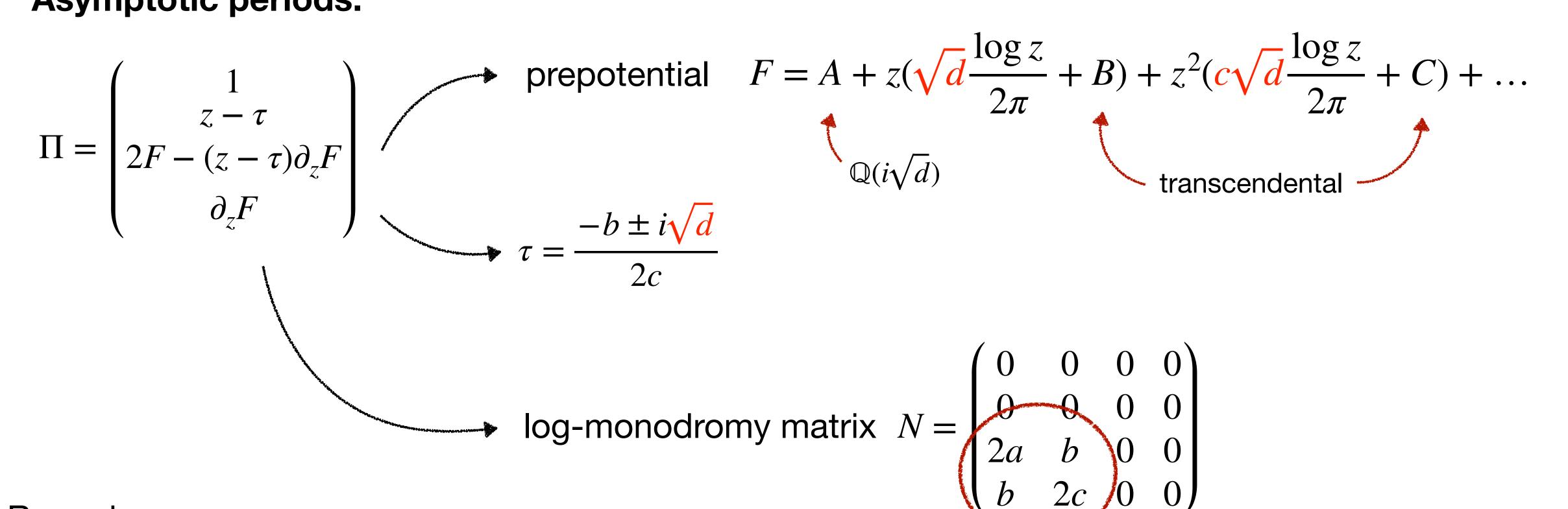
• Coefficient \sqrt{d} characterizes deviation away from rational numbers

[Bastian, Grimm, DH, Schlechter]



K-point: periods

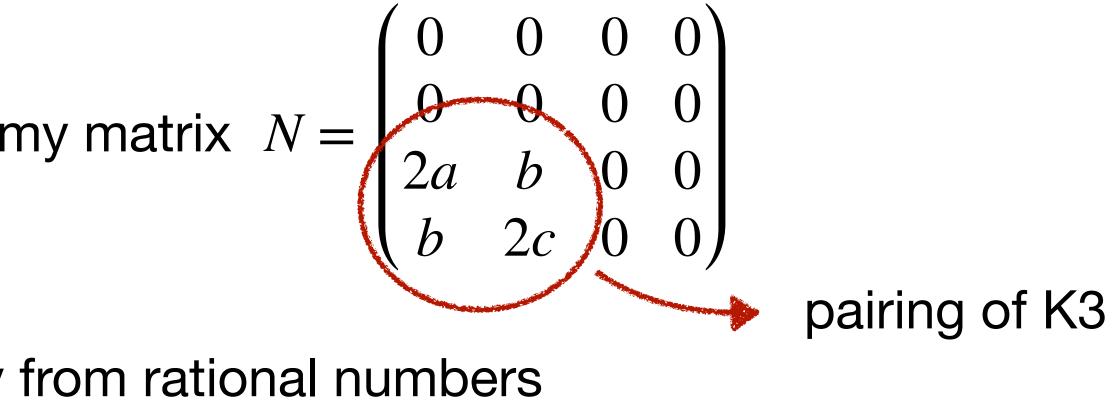
Asymptotic periods:



Remarks:

- Coefficient \sqrt{d} characterizes deviation away from rational numbers
- Explicit examples for small W_0 vacua proposed in [Bastian, Grimm, DH '21b] (with $\mathcal{O}(1)$ moduli masses)

[Bastian, Grimm, DH, Schlechter]



Modularity and period coefficients

What about transcendental numbers in periods?

Modularity and period coefficients

What about transcendental numbers in periods?

 \implies encoded in **modular forms** associated to singular geometry:

Calabi-Yau manifolds at boundary

Modular forms $f(q) = \sum_{n} c_n q^n$

Modularity and period coefficients

What about transcendental numbers in periods?

 \implies encoded in **modular forms** associated to singular geometry:

Calabi-Yau manifolds at boundary

[Bönisch, Klemm, Scheidegger, Zagier '22] Coefficients computed from modular form as L-values: [Alvarez-Garcia, Blumenhagen, Brinkmann, Schlechter '20] [Bastian, Grimm, DH, Schlechter]

$$L(f, x) = \sum_{n} \frac{c_n}{n^x}$$
 (similar to $\zeta(3)$ in LCS per

[Candelas, de la Ossa, Elmi, Van Straten '19; Related work: attractor points & supersymmetric flux vacua Kachru, Nally, Yang '20 & '21] also talks by Fabian Ruehle, Liam McAllister, Naomi Gendler

Modular forms
$$f(q) = \sum_{n} c_n q^n$$

riods)

Conifold point [Bastian, Grimm, DH, Schlechter]

Conifold periods:
$$\Pi =$$

$$= \begin{pmatrix} 1 \\ z \\ 2F - z \partial_z F \\ \partial_z F \end{pmatrix}$$

also [Bönisch, Klemm, Scheidegger, Zagier '22; Alvarez-Garcia, Blumenhagen, Brinkmann, Schlecht

prepotential
$$F_c = \frac{\tau}{2} + Az + z^2(k\frac{\log z}{4\pi i} + B) + \dots$$

 $\mathbb{Q}(\tau)$ positive integer

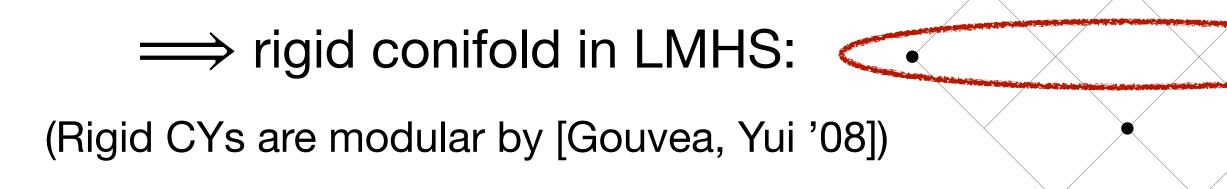
 $\mathsf{Re}(\tau) = 0, \frac{1}{2}$ L-value parameter $\operatorname{Im}(\tau) = r \frac{L(f,2)}{L(f,1)} > 0 \quad (r \in \mathbb{Q}^*)$

ter	'20]
-----	------

Conifold point [Bastian, Grimm, DH, Schlechter]

Conifold periods:
$$\Pi = \begin{pmatrix} 1 \\ z \\ 2F - z \partial_z F \\ \partial_z F \end{pmatrix}$$

Where does this modularity come from?



H, Schlechter] also [Bönisch, Klemm, Scheidegger, Zagier '22; Alvarez-Garcia, Blumenhagen, Brinkmann, Schlecht

prepotential
$$F_c = \frac{\tau}{2} + Az + z^2(k\frac{\log z}{4\pi i} + B) + \dots$$

 $\mathbb{Q}(\tau)$ positive integer

L-value parameter

$$\operatorname{\mathsf{Re}}(\tau) = 0, \frac{1}{2}$$
$$\operatorname{\mathsf{Im}}(\tau) = r \frac{L(f,2)}{L(f,1)} > 0 \quad (r \in \mathbb{Q})$$

ter	'20]
-----	------

*)

Conclusions & outlook

Conclusions:

- Asymptotic Hodge theory illuminates all boundaries in moduli space
- Singular geometry at the boundary encodes leading coefficients in periods

 topological and arithmetic numbers can be extracted from databases
- Rational coefficients for flux quantization in model building

Outlook:

- Promising to extend to multi-moduli setups
- Interpretation for coefficients of exponential corrections

Thank you for your attention!